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Abstract

The characteristics of the stress fields around a singular point on the stress singularity line of dissimilar materials in
three-dimensional joints are investigated using BEM. Contour for the order of stress singularity around the point is
mapped on Dundurs� parameters plane using eigen value analysis by FEM. The results in 3D joints are compared with
those in 2D joints having the same cross section and material combination. The order of stress singularity around the
singular point on the stress singularity line in 3D joints is almost identical with that in 2D joints in the singularity
region. However, the zero boundary of singularity in 3D joints is slightly different from that in 2D joints. Furthermore,
the multiple root of p = 1 exists in the eigen value analysis by FEM. Therefore, logarithmic singularity possibly occurs
around the singular point on the stress singularity line. Then, the stress distributions around this point are expressed by
the combination of the rk term and logarithmic singularity terms. Finally, the characteristics of the stress intensity fac-
tors of the rk term and logarithmic singularity terms around the singular points are investigated.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In dissimilar materials, the stress singularity frequently occurs at a vertex of an interface due to a dis-
continuity of materials. It is, therefore, important to clarify the characteristic of the stress and displacement
fields around a bonded edge. In the previous studies (Pageau and Biggers, 1995; Koguchi, 1997), the stress
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singularity occurs not only at the vertex of the three-dimensional structure of dissimilar materials but also
along the intersection of the interface with the free surface, and the cross line has been referred as a stress
singularity line (see Fig. 1). The characteristics of the stress fields and their stress intensity factors around a
point on the stress singularity line in dissimilar materials have been not made clear so far.
The two-dimensional asymptotic stress fields near an apex are expressed by a linear combination of

rij / Kijr
p�1 or rij / Lijr

p�1 ln r corresponding to roots p in 0 < Re(p) < 1, rij / Lij log r to a double roots
at p = 1 as well as no singularity ones rij / Kijr

p�1 to roots p in Re(p) > 1 (Bogy, 1970, 1971a,b; Bogy
and Wang, 1971; Dempsey and Sinclair, 1979, 1981; Dempsey, 1995; Inoue et al., 1994, 1995, 1996), where
r is a radial distance from an apex, and p is a root of an eigen equation. The constant values, Kij and Lij, for
each solution indicate the stress intensity factors for the stress fields. Yang (1998a,b) and Gadi et al. (2000)
examined the singular stress fields for the type of log r singularity that can be used to describe well for joints
under thermal loading. As mentioned above, the characteristics of the stress fields in two-dimensional joints
are represented in a form of rp�1 singularity or log r singularity depending on geometry of joints and loading
conditions. However, there still are few investigations on the characteristics of the stress fields and the stress
intensity factors around the vertex or the point on the stress singularity line of three-dimensional joints. The
stress fields around the vertex of three-dimensional joints initially are defined only in a form of rp�1 singu-
larity (Koguchi, 1997; Lee and Im, 2003). Afterwards, Koguchi et al. (2003) showed that the rp�1 singularity
and logarithmic singularity possibly occur around the vertex of three-dimensional dissimilar materials joints,
because the multiple root for p = 1 exists in the results of eigen value analysis based on FEM.
In this paper, the characteristics of the stress fields and the stress intensity factors around the singular

point on the stress singularity line in three-dimensional dissimilar materials joints are investigated by a
three-dimensional boundary element program. The order of stress singularity k around this point is
investigated using the three-dimensional eigen value analysis by FEM. We present the results for material
combinations falling upon no singularity region, singularity region and at zero boundary of singularity on
a2D–b2D Dundurs� parameters plane. The parameters, a2D and b2D, are defined as follows:
a2D ¼ Km2 � m1
Km2 þ m1

b2D ¼ Kðm2 � 2Þ � ðm1 � 2Þ
Km2 þ m1

ð1Þ
θ

Material 1

Material 2

Stress singularity line

θ

Material 1

Material 2

Stress singularity line

Fig. 1. Stress singularity line in a three-dimensional joint of dissimilar materials.
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where
Fig. 2.
analys
K ¼ G1
G2

ð2Þ

mi ¼
4ð1� miÞ for plane strain

4

1þ mi
for plane stress

8<
: ði ¼ 1; 2Þ ð3Þ
in which G is shear modulus and m is Poisson�s ratio. The subscript of these mechanical properties represents
the region of materials; 1 refers to the lower region and 2 the upper region in Fig. 1.
2. Method and model for analysis

2.1. Eigen value analysis based on FEM

FEM formulation using an interpolation function of displacements, considering the stress singularity
presented by Yamada and Okumura (1981) and Pageau and Biggers (1995) is used to analyze the order
of stress singularity around the singular point on the stress singularity line. Fig. 2(a) shows the model
for analysis. The singular point is at the origin in a spherical coordinate system. Taking the displacement
at the origin as zero, the displacement in the i direction ui at each node on the surface of FEM model near
the singular point can be expressed as follow:
uiðr; h;/Þ ¼ rpfiðh;/Þ ð4Þ

where p = k + 1. k is the order of stress singularity. r,h and / are the spherical coordinates. Singular ele-
ment with eight nodes using the serendipity quadratic interpolation function is employed for our analysis.
Then, the eigen equation is derived by the principles of virtual work for deducing the root p,
ðp2½A� þ p½B� þ ½C�Þfug ¼ 0 ð5Þ

There are many roots, p, obtained from solving the characteristic equation (Eq. (5)). Generally, the dis-
placement fields around the singular point can be expressed as the following asymptotic series.
Model of eigen analysis using FEM. (a) Model of a semispherical for eigen analysis using FEM. (b) Mesh division for eigen
is using FEM.
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ui ¼
Xn
a¼1

rpafiaðh;/; paÞ ð6Þ
where fia(h,/,pa) is the angular variation of displacement fields in the i direction. pa is the ath root of an
eigen equation. So, Eq. (5) can be factorized for n roots as
Yn
a¼1

ðp � paÞ ¼ 0 ð7Þ
when the multiple root of p = p1 exist, Eq. (7) is rewritten as
ðp � p1Þ
m
Yn
a¼2

ðp � paÞ ¼ 0 ð8Þ
where m is the number of the multiple root. In this case, the results of the displacement fields of Eq. (6) can
not be obtained by calculating only one term of factor, but necessarily correspond with all multiple terms of
factor. The answer of mth root can be obtained by calculating the derivative of order (m � 1)th of the dif-
ferential equation of the displacement fields with respect to p1. Ordinarily, the differential equation of the
displacement fields neglected the body force can be written by using the constitutive equations and strain–
displacement relations as shown in the following expression.
NðuiÞ ¼
o2

oxjxj
þ 1

1� 2m

� �
o2

oxioxj

� 	
ui ¼ 0 ð9Þ
where N( ) represents a differential operator, which also satisfies the following expression as
o
j

opj1
½NðuiÞ� ¼ N

o
jui
opj1

 !" #
¼ 0 ð10Þ
If Eq. (4) satisfies Eq. (9) and the mth order term of factor exists, the displacements of the mth order term of
factor can be written as follows:
ui;m ¼ o
m�1

opm�11

½rp1fi1ðh;/; p1Þ�

¼ rp1ðln rÞm�1gi1ðh;/; p1Þ þ rp1ðln rÞm�2gi2ðh;/; p1Þ þ � � � þ rp1ðln rÞgim�1ðh;/; p1Þ
þ rp1gimðh;/; p1Þ ð11Þ
where gib(b = 1,2, . . . ,m) is the angular variation of the displacement fields in the i direction for logarithmic
singularity terms as p = p1. For example, the displacement component of the fifth order term of factor, ui,5,
is written in the same way.
NðuiÞ ¼ N
oui
op1

� �� 	
¼ N

o
2ui
op21

� �� 	
¼ N

o
3ui
op31

� �� 	
¼ N

o
4ui
op41

� �� 	
¼ 0 ð12Þ

ui;5 ¼ rp1ðln rÞ4gi1ðh;/; p1Þ þ rp1ðln rÞ3gi2ðh;/; p1Þ þ rp1ðln rÞ2gi3ðh;/; p1Þ þ rp1ðln rÞgi4ðh;/; p1Þ
þ rp1gi5ðh;/; p1Þ ð13Þ
where if p1 = 1, Eq. (13) becomes as follow
ui;5ðr; h;/Þ ¼ rðln rÞ4gi1ðh;/Þ þ rðln rÞ3gi2ðh;/Þ þ rðln rÞ2gi3ðh;/Þ þ rðln rÞgi4ðh;/Þ þ rgi5ðh;/Þ ð14Þ
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Therefore, when five roots of p1 = 1 exist, the displacement fields of the fifth order term of factor are com-
posed of r(ln r)4, r(ln r)3, r(ln r)2, r ln r and r terms. Finally, the displacements fields around the singular point
can be written by gathering the results for all terms of factor as
uiðr; h;/Þ ¼ rgi1ðh;/Þ þ rðln rÞgi2ðh;/Þ þ rðln rÞ2gi3ðh;/Þ þ rðln rÞ3gi4ðh;/Þ þ rðln rÞ4gi5ðh;/Þ

þ
X
a¼2

rpafiaðh;/; paÞ ð15Þ
Then, the expressions for the stress fields are obtained through the differentiation of displacements.
rijðr; h;/Þ ¼ Lij1ðh;/Þ þ Lij2ðh;/Þ ln r þ Lij3ðh;/Þðln rÞ2 þ Lij4ðh;/Þðln rÞ3 þ Lij5ðh;/Þðln rÞ4

þ
X
a¼2

rkaKijaðh;/; paÞ ð16Þ
where Lijm is the stress intensity factor of logarithmic singularity term (m = 1,2, . . . , 5), Kija is that of r
ka

term (a = 2,3, . . . ,n), and ka = pa � 1. The subscripts i, j refer r,h and / in a spherical coordinate system.
The domain for the eigen value analysis by FEM at the singular point on a stress singularity line is semi-
spherical which the free surface and the interface plane are taken at h = 0,p and h = p/2 respectively, and
the mesh division used in this analysis is shown in Fig. 2(b). The square mesh size is employed as /
· h = 18� · 18� that the convergence rating and the time consumption for calculation are optimum.

2.2. Boundary element method

BEM is efficient for investigating the stress distribution in a three-dimensional joint structure, because it
requires less memory than in the calculation of FEM for the large number of element. Furthermore, the
accurate stress and displacement fields for any points in the joints with high stress sites can be obtained
by preparing fine mesh data. The boundary integral equation in terms of the displacement vector, uj,
and traction vector, tj, can be expressed as follows:
CijujðP Þ ¼
Z
A
fUijðP ;QÞtjðQÞ � T ijðP ;QÞujðQÞgdsðQÞ ð17Þ
where P and Q are points on the boundary. Cij is a constant determined from the configuration of bound-
ary. Uij and Tij are the fundamental solutions for displacement and surface traction, respectively. Here,
Rongved�s fundamental solution satisfying the boundary conditions at the interface is applied for our
analysis.
A typical model employed in our calculation is shown in Fig. 3(a), where every free surface is a square in

the same size, a side of which is 10mm in length and the interface of joints is located at the middle of the
upper and the lower surfaces. Parts indicated by shaded blocks as depicted in Fig. 3(a) are divided into a
mesh utilizing the symmetry of joints configuration. The singular point Si with a spherical coordinate sys-
tem to estimate the stress distributions in the joint is taken on the stress singularity line as shown in Fig.
3(b). The stress fields around three singular points S1,S2 and S3 on the stress singularity line are presented
in order to investigate the stress distributions and the characteristics of the stress intensity factors in 3D
joints. The distances from the singular points S1,S2 and S3 to the vertex point are 0.0504, 0.0392 and
0.0292mm, respectively. An example of mesh division for the joints is shown in Fig. 4, where the minimum
length of an element near the singular point is 0.8lm. The total number of elements is 1370 and the total
number of nodes is 3067. The analyses are performed under the condition where a uniform constant ten-
sile stress, rzz(=P), is applied at the upper surface and the displacement in the z-direction only at the lower
surface is fixed.



Fig. 3. A model for analysis in BEM and polar coordinate system around the singular point on the stress singularity line. (a) Model for
analysis of joint. (b) Spherical coordinate system with the origin at the singular point Si.
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Fig. 4. Mesh division for model.
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3. Results and discussion

3.1. The contour map of the order of stress singularity

Mechanical properties for material 1 in the analysis are fixed at 206.0GPa for E1 and 0.3 for m1. E2 and m2
are determined by using Eq. (1)–(3), which can apply to any values of a2D and b2D in the plane strain con-
dition. Then, the eigen value analysis by FEM is used to examine the order of stress singularity around the
singular point on the stress singularity line for each material combination. The results in 3D joints are com-
pared with those in 2D joints of the same cross section plane of 3D joints in the same material combination.
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The order of stress singularity in 2D joints is also determined by using the eigen value analysis by FEM.
Afterwards, the contour map of the order of stress singularity on Dundurs� composite plane is shown in
Fig. 5 for the singular point on the stress singularity line in 3D joints and for the apex in 2D joints. The
zero boundary of singularity in 2D joints is represented by two lines, a2D = 0 and b2D = a2D/2. In this
study, the point on the zero boundary of singularity in 3D joints is examined by varying the value of
a2D while holding b2D at a fixed value until �0.001 < ka < 0 or 0.999 < pa < 1.0. Furthermore, the loci of
the root of characteristic equations for the order of stress singularity, �0.05, �0.10, �0.15, and so on,
are still investigated by varying the value of a2D in the range 2b2D 6 a2D 6 1.0 while holding b2D at a fixed
value. Then, the value of a2D at k = �0.05 to �0.35 is obtained by using the least-squares regression. In the
singularity region, the contour of the order of stress singularity of 2D joints and 3D joints as well as the 2D
analytical solution are almost identical to each other. From the previous study (Koguchi and Muramoto,
2000), it is noticed that the order of stress singularity around the singular point on the stress singularity line
is less than that around the vertex of 3D joints. However, in the range of b > 0.32 and b < 0.6, the zero
boundary of singularity in 3D joints does not seem to be the same line with that in 2D joints.
As the previous paper (Koguchi et al., 2003), it is found that the multiple root of p = p1 = 1 exists in the

result of the three-dimensional eigen value analysis by FEM, while two-dimensional eigen value analysis by
FEM obtains only the single root of p = 1. Therefore, from the theory mentioned at the beginning of the
section, the stress fields around the singular point on the stress singularity line in the 3D joints can be writ-
ten possibly in a form of the combination of rk term and logarithmic singularity terms. From the three-
dimensional FEM eigen value analysis, there are five roots of p1 = 1 for logarithmic singularity terms
and a root pa for the r

k term as shown in Tables 1–3. Therefore, the stress fields can be expressed as follows:
rijðr; h;/Þ ¼ Lij1ðh;/Þ þ Lij2ðh;/Þ ln r þ Lij3ðh;/Þðln rÞ2 þ Lij4ðh;/Þðln rÞ3 þ Lij5ðh;/Þðln rÞ4

þ rkKijaðpa; h;/Þ ð18Þ
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Table 1
Eigen values in a2D = 0.1 and b2D = 0.1

Real part of p Imaginary part of p k = Re(p) � 1
3D

1 1.0081952 0.0000000 0.0081952
2 0.9991702 0.0000000 �0.0008298
3 0.9997747 0.0000000 �0.0002253
4 1.0001575 0.0000000 0.0001575
5 0.9999694 0.0000000 �0.0000306
6 1.0000497 0.0000000 0.0000497

2D

1 1.0083351 0.0000000 0.0083351
2 1.0000000 0.0000000 0.0000000

Table 2
Eigen values in a2D = 0.8 and b2D = 0.2

3D Real part of p Imaginary part of p k = Re(p) � 1
1 0.7922460 0.0000000 �0.2077540
2 1.0011846 0.0000000 0.0011846
3 0.9990375 0.0000000 �0.0009625
4 1.0002454 0.0000000 0.0002454
5 1.0001365 0.0000000 0.0001365
6 1.0000081 0.0000000 0.0000081

Table 3
Eigen values in a2D = 0.6 and b2D = 0.3

3D Real part of p Imaginary part of p k = Re(p) � 1
1 0.9992602 0.0000000 �0.0007398
2 0.9996580 0.0000000 �0.0003420
3 1.0005570 0.0000000 0.0005570
4 1.0000740 0.0000000 0.0000740
5 1.0001653 0.0000000 0.0001653
6 1.0002720 0.0000000 0.0002720
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3.2. Stress analysis of the singular points on the stress singularity line

In this section, the stress fields around the singular points S1,S2 and S3 on the stress singularity line in
3D joints are investigated using BEM with Rongved�s fundamental solution. The material combinations of
a joint are determined so as to take the pairs of a2D and b2D locating in the no singularity region and the
singularity region as well as at the zero boundary of singularity on Dundurs� composite plane. The stress
fields are calculated along the r direction within r/L 6 10�2 in the range of �60� 6 h 6 60� on the plane that
is perpendicular to a free surface and to an interface of dissimilar materials as shown in Fig. 3(b). The
results in 3D joints are compared with those in the 2D joints FEM analyzed by MENTAT program in
the same material combinations and boundary conditions. Then, we do the curve fitting of stress distribu-
tion along the r direction by using least-squares regression to obtain the stress intensity factor (Lijm
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(m = 1,. . . , 5),Kija) of each term in Eq. (18). Afterwards, the characteristics of the stress intensity factors of
rk term and logarithmic singularity terms are investigated.

3.2.1. Stress distribution in the no singularity region on Dundurs� composite plane

In this example, the material combination is at a2D = 0.1 and b2D = 0.1 (E1 = 206GPa, m1 = 0.3,
E2 = 181.3504GPa, m2 = 0.14444) where is in the no singularity region on Dundurs� composite plane.
The stress distributions, rij/P, along the r direction with various values of h for the singular point S1 are
shown in Fig. 6(a)–(c) in log–log scale. The slope for each plot is always nearly and more than zeros. There-
fore, it can be confirmed that there is no existing of rk singularity (0 < Re(pa) < 1) around this point. Fig.
6(a) shows the log–log plots of rhh/P. For h = �60�, 60�, the plots are near to the free surface, so their mag-
nitudes are very small. The stress level increases as approaches to the interface (h = 0�) of dissimilar mate-
rials. In case of rrh/P in Fig. 6(b), the magnitude of the plot seems to become the highest one as h
approaches to 45�, and the stress level of rrr/P increases coming near the free surface as shown in Fig.
6(c). These distributions of the stress components are in accord with loading and boundary conditions.
The stress distributions of rhh/P for three singular points S1,S2 and S3 are plotted in semi-log scale in

order to magnify the distributions as shown in Fig. 6(d). The profiles of the stress distributions are not
Fig. 6. The stress distributions around the singular point on the stress singularity line (a2D = 0.1,b2D = 0.1). (a) A log–log plot of rhh/P
for the singular point S1. (b) A log–log plot of rrh/P for the singular point S1. (c) A log–log plot of rrr/P for the singular point S1. (d) A
semi-log plot of rhh/P.
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likely the simple line as in two-dimensional FEM analysis. However, the slopes of these lines are positive. It
is noticed that the profiles of the stress distributions of rhh/P for each singular point in 3D joints are dif-
ferent. From the calculation of two-dimensional FEM, k is 0.008. It agrees well with three-dimensional
FEM eigen value analysis that k > 0 occurs and is equal to 0.00819 as shown in Table 1. In the previous
section, five roots of p1 = 1 occur in this region, and then the curve fitting of the stress distributions along
the r direction is performed by defining k = 0.00819 in Eq. (18). The stress intensity factors of rk term, Kija/
P, for the singular point S1 are plotted against h in Fig. 7(a). These profiles of Khha/P and Krha/P varying
with h are simple and continuous, while the profile of Krra/P seems to be discontinuous at the interface. It is
remarkable that the profiles of Kija/P conform very well to the variation of the stress components level with
h in Fig. 6(a)–(c). The stress intensity factor Khha/P decreases very little when the singular point comes
toward the vertex point as shown in Fig. 7(b). Also, the profiles of Lhhm/P for logarithmic singularity terms
as the singular point is at S1 are shown in Fig. 8(a). Their magnitudes at any values of h are divided with the
absolute value of Lhhm/P at h = �40� It is noticed that their profiles are closely similar to each other except
their magnitudes that decrease rapidly with the increase of the power number of logarithmic term. For
example, at h = �40�, the stress intensity factor of the constant term, Lhh1/P, is �0.981 while the stress
intensity factor of ln(r)4 term, Lhh5/P, is only �0.000319. The characteristics of the stress intensity factor
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of logarithmic singularity terms, Lhhm/P, are obviously different from that of r
k term. In Fig. 8(b), the pro-

file Lhh1/P also varies as the position of the singular point changes.

3.2.2. Stress distribution in the singularity region on Dundurs� composite plane

The stress distributions in the singularity region are investigated at the material combinations as
a2D = 0.8 and b2D = 0.2 (E1 = 206GPa, m1 = 0.3, E2 = 22.4170GPa, m2 = 0.3293) on Dundurs� composite
plane. In Table 2, there are five roots of p1 = 1 and a root pa = 0.792. Fig. 9(a)–(c) show the log–log plots
of the stress distributions, rij/P, along the r direction for the singular point S1. Slope of each line is almost
Fig. 9. The stress distributions around the singular point on the stress singularity line (a2D = 0.8,b2D = 0.2). (a) A log–log plot of rhh/P
for the singular point S1. (b) A log–log plot of rrh/P for the singular point S1. (c) A log–log plot of rrr/P for the singular point S1. (d) A
semi-log plot of rhh/P for the singular point S1. (e) A semi-log plot of rhh/P at h = �30�.
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the same value within r/L 6 10�2 and obviously less than zero. Therefore, the occurrence of the stress sin-
gularity in the form of the rk singularity is possible in this region. However, in the similar manner with the
previous section, these plots also curve slightly as the distance from the singular point increases as shown
explicitly in semi-log plots (see Fig. 9(d)). The plots of the stress distributions of rhh/P in 3D joints are obvi-
ously different with those in 2D joint, and their magnitudes are larger. Furthermore, the magnitude of the
stress distribution of rhh/P also obviously increases with the decrease of the distance from the singular point
to the vertex point as shown in Fig. 9(e). According to the results in Table 2, the least-squares regression is
applied by setting k = pa � 1 = �0.208 in Eq. (18) for fitting the curves of the stress distributions. Then, the
stress intensity factors of the rk singularity term, Kija/P, for the singular points S1,S2 and S3 in 3D joints
and for the apex in 2D joints are plotted against h in Fig. 10(a)–(c). Their profiles in 3D joints and 2D joints
are almost similar with each other. It means that the characteristics of the stress distributions around the
singular point on the stress singularity line in 3D joints surely consist of the stress distributions induced by
the rk singularity term. The stress intensity factors of rk singularity term in 3D joints are obviously larger
than those in 2D joints, and their magnitudes increase as the singular point comes closely to the vertex
point. It is also noticed that the stress intensity factors of rk singularity term are larger and vary more rap-
idly in the region of material 1 (E1 = 206GPa, m1 = 0.3) than in that of material 2 (E2 = 22.4170GPa,
m2 = 0.3293). The characteristic of Krra/P in the singularity region differs obviously and reversely from that
in the no singularity region. Furthermore, the profiles of (Lhhm/P)/(Lhhm at h=�40�/P) for the singularity
point S1 and the profiles of Lhh1/P for three singular points are shown in Fig. 11(a) and (b), respectively.
These profiles are also reverse to the profiles of logarithmic singularity terms in the no singularity region.
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Fig. 10. The characteristics of the stress intensity factors of rk singularity term (a2D = 0.8,b2D = 0.2). (a) Khha/P, (b) Krra/P and (c)
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Fig. 11. The characteristics of the stress intensity factors of logarithmic singularity term for rhh/P (a2D = 0.8,b2D = 0.2). (a) For the
singularity point S1. (b) The stress intensity factor Lhh1/P.

Fig. 12. The stress distributions around the singular point on the stress singularity line (a2D = 0.6,b2D = 0.3). (a) A log–log plot of rhh/
P for the singularity point S1. (b) A log–log plot of rrh/P for the singularity point S1. (c) A log–log plot of rrr/P for the singularity point
S1. (d) A semi-log plot of rhh/P.
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Therefore, in the singularity region, the stress distributions also induce the rk singularity as well as the log-
arithmic singularity around the singular point.

3.2.3. Stress distribution at the zero boundary of singularity on Dundurs� composite plane

The material properties of dissimilar materials are determined to put Dundurs� composite parameter on
the zero boundary of singularity in plane strain condition (E1 = 206GPa,m1 = 0.3,E2 = 56.0634
GPa,m2 = 0.0968) as a2D = 0.6 and b2D = 0.3. According to the results in Table 3, there are five roots of
p1 = 1 and the very small r

k singularity root pa = 0.99926 (k = �0.00074), so we also used Eq. (18) for fit-
ting the curves of the stress distributions. The stress distributions, rij/P, along the r direction for the sin-
gular point S1 in Fig. 12(a)–(c) are shown that the slopes of log–log plots for a various h are very small
and seem to be zero. Furthermore, in semi-log plots as shown in Fig. 12(d), the plots of the stress distribu-
tions of rhh/P for three singular points in 3D joints obviously curve, while the profiles of the plots are
simple and flat in 2D joints.
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The order of stress singularity obtained from an eigen value analysis by FEM is very small. Therefore,
the logarithmic singularity mainly affects to the stress field much than the rk singularity at the zero bound-
ary of singularity. Fig. 13(a) shows the characteristics of the stress intensity factors of the rk singularity
term, Kija/P. These plots are continuous and have almost the symmetrical shape with the interface, even
if the mechanical properties of material 1 are quite different from those of material 2. Fig. 13(b) shows
the profiles of the stress intensity factor Khha/P for three singular points, and the characteristics of logarith-
mic singularity terms, Lhhm/P, for a various h are shown in Fig. 14(a) and (b). These profiles conform to the
profiles of the stress intensity factors for logarithmic singularity terms in the singularity region, but reverse
to those profiles in the no singularity region.
4. Conclusion

We investigated the characteristics of stress singularity fields and their stress intensity factors at the
points on the stress singularity line of dissimilar materials in three-dimensional joints. The order of stress
singularity near these points was investigated using eigen value analysis by FEM. The contour map of the
order of stress singularity was presented on a a2D–b2D plane in the plane strain condition. We found that
the order of stress singularity around this singular point in three-dimensional joints was almost identical
with that in two-dimensional joints. However, the bound vanishing the stress singularity in a three-dimen-
sional stress state varied little compared to that in two-dimensional theory. Furthermore, the multiple root
of p = 1 existed in the result of the three-dimensional FEM eigen value analysis. Therefore, the logarithmic
singularity possibly occurred at the point on the stress singularity line in the three-dimensional joints. Then,
the stress distributions and the characteristics of stress intensity factors for three singular points on the
stress singularity line were investigated by BEM. The results showed that the stress fields at the points
on the stress singularity line in three-dimensional joints were composed very well of the rk term and the
logarithmic singularity terms.
References

Bogy, D.B., 1970. On the problem of edge-bonded elastic quarter-planes loaded at the boundary. Int. J. Solids Struct. 6, 1287–1313.
Bogy, D.B., 1971a. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J. Appl. Mech. 38,
377–386.

Bogy, D.B., 1971b. On the plane elastostatic problem of a loaded crack terminating at a material interface. J. Appl. Mech. 38, 911–918.
Bogy, D.B., Wang, K.C., 1971. Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. Int. J. Solids
Struct. 7, 993–1005.

Dempsey, J.P., 1995. Power-logarithmic stress singularities at bi-material corners and interface cracks. J. Adhes. Sci. Technol. 9, 253–
265.

Dempsey, J.P., Sinclair, G.B., 1979. On the stress singularities in the plane elasticity of the composite wedge. J. Elasticity 9, 373–391.
Dempsey, J.P., Sinclair, G.B., 1981. On the singular behavior at the vertex of a bi-material wedge. J. Elasticity 11, 317–330.
Gadi, K.S., Joseph, P.F., Zhang, N., Kaya, A.C., 2000. Thermally induced logarithmic stress singularities in a composite wedge and
other anomalies. Eng. Fract. Mech. 65, 645–664.

Inoue, T., Koguchi, H., 1996. Influence of the intermediate material on the order of the stress singularity in three-phase bonded
structure. Int. J. Solids Struct. 33, 399–417.

Inoue, T., Koguchi, H., Yada, T., 1994. Analysis near the apex in three-phase bonded material with arbitrary wedge angles under
normal surface loading on the surface (1st report, stress distribution in the stress fields with singularity of type r�k and logr). Trans.
Jpn. Soc. Mech. Eng. (A) 61-581, 73–79 (in Japanese).

Inoue, T., Koguchi, H., Yada, T., 1995. Solution of thermal stresses near apex in dissimilar materials by thermoelastic theory. Trans.
Jpn. Soc. Mech. Eng. (A) 61-581, 73–79 (in Japanese).

Koguchi, H., 1997. Stress singularity analysis in three-dimensional bonded structure. Int. J. Solids Struct. 34, 461–480.
Koguchi, H., Muramoto, T., 2000. The order of stress singularity near the vertex in three-dimensional joints. Int. J. Solids Struct. 37,
4737–4762.



3074 M. Prukvilailert, H. Koguchi / International Journal of Solids and Structures 42 (2005) 3059–3074
Koguchi, H., Yamaguchi, M., Minaki, K., Monchai, P., 2003. Analysis of stress singularity fields in three-dimensional joints by three-
dimensional boundary element method using fundamental solution for two-phase transversely isotropic materials. Trans. Jpn. Soc.
Mech. Eng. (A) 69-679, 585–593 (in Japanese).

Lee, Y., Im, S., 2003. On the computation of the near-tip stress intensities for three-dimensional wedges via two-state M-integral. J.
Mech. Phys. Solids 51, 825–850.

Pageau, S.S., Biggers Jr., S.B., 1995. Finite element evaluation of free-edge singular stress fields in anisotropic materials. Int. J. Numer.
Methods Eng. 38, 2225–2239.

Yamada, Y., Okumura, H., 1981. Analysis of local stress in composite materials by the 3-D finite element. In: Proc. of the Japan–US
Conference, Tokyo p. 55–64.

Yang, Y.Y., 1998a. Stress analysis in a joint with a functionally graded material under a thermal loading by using the Mellin transform
method. Int. J. Solids Struct. 35, 1261–1287.

Yang, Y.Y., 1998b. Asymptotic description of the logarithmic singular stress field and its application. Int. J. Solids Struct. 35, 3917–
3933.


	Stress singularity analysis around the singular point on the stress singularity line in three-dimensional joints
	Introduction
	Method and model for analysis
	Eigen value analysis based on FEM
	Boundary element method

	Results and discussion
	The contour map of the order of stress singularity
	Stress analysis of the singular points on the stress singularity line
	Stress distribution in the no singularity region on Dundurs rsquo  composite plane
	Stress distribution in the singularity region on Dundurs rsquo  composite plane
	Stress distribution at the zero boundary of singularity on Dundurs rsquo  composite plane


	Conclusion
	References


